Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  appdivnq GIF version

Theorem appdivnq 6661
 Description: Approximate division for positive rationals. Proposition 12.7 of [BauerTaylor], p. 55 (a special case where 𝐴 and 𝐵 are positive, as well as 𝐶). Our proof is simpler than the one in BauerTaylor because we have reciprocals. (Contributed by Jim Kingdon, 8-Dec-2019.)
Assertion
Ref Expression
appdivnq ((𝐴 <Q 𝐵𝐶Q) → ∃𝑚Q (𝐴 <Q (𝑚 ·Q 𝐶) ∧ (𝑚 ·Q 𝐶) <Q 𝐵))
Distinct variable groups:   𝐴,𝑚   𝐵,𝑚   𝐶,𝑚

Proof of Theorem appdivnq
StepHypRef Expression
1 simpl 102 . . . 4 ((𝐴 <Q 𝐵𝐶Q) → 𝐴 <Q 𝐵)
2 ltrelnq 6463 . . . . . . . 8 <Q ⊆ (Q × Q)
32brel 4392 . . . . . . 7 (𝐴 <Q 𝐵 → (𝐴Q𝐵Q))
43adantr 261 . . . . . 6 ((𝐴 <Q 𝐵𝐶Q) → (𝐴Q𝐵Q))
54simpld 105 . . . . 5 ((𝐴 <Q 𝐵𝐶Q) → 𝐴Q)
64simprd 107 . . . . 5 ((𝐴 <Q 𝐵𝐶Q) → 𝐵Q)
7 recclnq 6490 . . . . . 6 (𝐶Q → (*Q𝐶) ∈ Q)
87adantl 262 . . . . 5 ((𝐴 <Q 𝐵𝐶Q) → (*Q𝐶) ∈ Q)
9 ltmnqg 6499 . . . . 5 ((𝐴Q𝐵Q ∧ (*Q𝐶) ∈ Q) → (𝐴 <Q 𝐵 ↔ ((*Q𝐶) ·Q 𝐴) <Q ((*Q𝐶) ·Q 𝐵)))
105, 6, 8, 9syl3anc 1135 . . . 4 ((𝐴 <Q 𝐵𝐶Q) → (𝐴 <Q 𝐵 ↔ ((*Q𝐶) ·Q 𝐴) <Q ((*Q𝐶) ·Q 𝐵)))
111, 10mpbid 135 . . 3 ((𝐴 <Q 𝐵𝐶Q) → ((*Q𝐶) ·Q 𝐴) <Q ((*Q𝐶) ·Q 𝐵))
12 ltbtwnnqq 6513 . . 3 (((*Q𝐶) ·Q 𝐴) <Q ((*Q𝐶) ·Q 𝐵) ↔ ∃𝑚Q (((*Q𝐶) ·Q 𝐴) <Q 𝑚𝑚 <Q ((*Q𝐶) ·Q 𝐵)))
1311, 12sylib 127 . 2 ((𝐴 <Q 𝐵𝐶Q) → ∃𝑚Q (((*Q𝐶) ·Q 𝐴) <Q 𝑚𝑚 <Q ((*Q𝐶) ·Q 𝐵)))
148adantr 261 . . . . . . . . 9 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → (*Q𝐶) ∈ Q)
155adantr 261 . . . . . . . . 9 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → 𝐴Q)
16 mulclnq 6474 . . . . . . . . 9 (((*Q𝐶) ∈ Q𝐴Q) → ((*Q𝐶) ·Q 𝐴) ∈ Q)
1714, 15, 16syl2anc 391 . . . . . . . 8 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → ((*Q𝐶) ·Q 𝐴) ∈ Q)
18 simpr 103 . . . . . . . 8 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → 𝑚Q)
19 simplr 482 . . . . . . . 8 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → 𝐶Q)
20 ltmnqg 6499 . . . . . . . 8 ((((*Q𝐶) ·Q 𝐴) ∈ Q𝑚Q𝐶Q) → (((*Q𝐶) ·Q 𝐴) <Q 𝑚 ↔ (𝐶 ·Q ((*Q𝐶) ·Q 𝐴)) <Q (𝐶 ·Q 𝑚)))
2117, 18, 19, 20syl3anc 1135 . . . . . . 7 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → (((*Q𝐶) ·Q 𝐴) <Q 𝑚 ↔ (𝐶 ·Q ((*Q𝐶) ·Q 𝐴)) <Q (𝐶 ·Q 𝑚)))
22 recidnq 6491 . . . . . . . . . . 11 (𝐶Q → (𝐶 ·Q (*Q𝐶)) = 1Q)
2322oveq1d 5527 . . . . . . . . . 10 (𝐶Q → ((𝐶 ·Q (*Q𝐶)) ·Q 𝐴) = (1Q ·Q 𝐴))
2423ad2antlr 458 . . . . . . . . 9 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → ((𝐶 ·Q (*Q𝐶)) ·Q 𝐴) = (1Q ·Q 𝐴))
25 mulassnqg 6482 . . . . . . . . . 10 ((𝐶Q ∧ (*Q𝐶) ∈ Q𝐴Q) → ((𝐶 ·Q (*Q𝐶)) ·Q 𝐴) = (𝐶 ·Q ((*Q𝐶) ·Q 𝐴)))
2619, 14, 15, 25syl3anc 1135 . . . . . . . . 9 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → ((𝐶 ·Q (*Q𝐶)) ·Q 𝐴) = (𝐶 ·Q ((*Q𝐶) ·Q 𝐴)))
27 1nq 6464 . . . . . . . . . . . 12 1QQ
28 mulcomnqg 6481 . . . . . . . . . . . 12 ((1QQ𝐴Q) → (1Q ·Q 𝐴) = (𝐴 ·Q 1Q))
2927, 28mpan 400 . . . . . . . . . . 11 (𝐴Q → (1Q ·Q 𝐴) = (𝐴 ·Q 1Q))
30 mulidnq 6487 . . . . . . . . . . 11 (𝐴Q → (𝐴 ·Q 1Q) = 𝐴)
3129, 30eqtrd 2072 . . . . . . . . . 10 (𝐴Q → (1Q ·Q 𝐴) = 𝐴)
3215, 31syl 14 . . . . . . . . 9 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → (1Q ·Q 𝐴) = 𝐴)
3324, 26, 323eqtr3d 2080 . . . . . . . 8 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → (𝐶 ·Q ((*Q𝐶) ·Q 𝐴)) = 𝐴)
3433breq1d 3774 . . . . . . 7 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → ((𝐶 ·Q ((*Q𝐶) ·Q 𝐴)) <Q (𝐶 ·Q 𝑚) ↔ 𝐴 <Q (𝐶 ·Q 𝑚)))
3521, 34bitrd 177 . . . . . 6 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → (((*Q𝐶) ·Q 𝐴) <Q 𝑚𝐴 <Q (𝐶 ·Q 𝑚)))
366adantr 261 . . . . . . . . 9 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → 𝐵Q)
37 mulclnq 6474 . . . . . . . . 9 (((*Q𝐶) ∈ Q𝐵Q) → ((*Q𝐶) ·Q 𝐵) ∈ Q)
3814, 36, 37syl2anc 391 . . . . . . . 8 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → ((*Q𝐶) ·Q 𝐵) ∈ Q)
39 ltmnqg 6499 . . . . . . . 8 ((𝑚Q ∧ ((*Q𝐶) ·Q 𝐵) ∈ Q𝐶Q) → (𝑚 <Q ((*Q𝐶) ·Q 𝐵) ↔ (𝐶 ·Q 𝑚) <Q (𝐶 ·Q ((*Q𝐶) ·Q 𝐵))))
4018, 38, 19, 39syl3anc 1135 . . . . . . 7 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → (𝑚 <Q ((*Q𝐶) ·Q 𝐵) ↔ (𝐶 ·Q 𝑚) <Q (𝐶 ·Q ((*Q𝐶) ·Q 𝐵))))
4122oveq1d 5527 . . . . . . . . . 10 (𝐶Q → ((𝐶 ·Q (*Q𝐶)) ·Q 𝐵) = (1Q ·Q 𝐵))
4241ad2antlr 458 . . . . . . . . 9 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → ((𝐶 ·Q (*Q𝐶)) ·Q 𝐵) = (1Q ·Q 𝐵))
43 mulassnqg 6482 . . . . . . . . . 10 ((𝐶Q ∧ (*Q𝐶) ∈ Q𝐵Q) → ((𝐶 ·Q (*Q𝐶)) ·Q 𝐵) = (𝐶 ·Q ((*Q𝐶) ·Q 𝐵)))
4419, 14, 36, 43syl3anc 1135 . . . . . . . . 9 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → ((𝐶 ·Q (*Q𝐶)) ·Q 𝐵) = (𝐶 ·Q ((*Q𝐶) ·Q 𝐵)))
45 mulcomnqg 6481 . . . . . . . . . . . 12 ((1QQ𝐵Q) → (1Q ·Q 𝐵) = (𝐵 ·Q 1Q))
4627, 45mpan 400 . . . . . . . . . . 11 (𝐵Q → (1Q ·Q 𝐵) = (𝐵 ·Q 1Q))
47 mulidnq 6487 . . . . . . . . . . 11 (𝐵Q → (𝐵 ·Q 1Q) = 𝐵)
4846, 47eqtrd 2072 . . . . . . . . . 10 (𝐵Q → (1Q ·Q 𝐵) = 𝐵)
4936, 48syl 14 . . . . . . . . 9 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → (1Q ·Q 𝐵) = 𝐵)
5042, 44, 493eqtr3d 2080 . . . . . . . 8 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → (𝐶 ·Q ((*Q𝐶) ·Q 𝐵)) = 𝐵)
5150breq2d 3776 . . . . . . 7 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → ((𝐶 ·Q 𝑚) <Q (𝐶 ·Q ((*Q𝐶) ·Q 𝐵)) ↔ (𝐶 ·Q 𝑚) <Q 𝐵))
5240, 51bitrd 177 . . . . . 6 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → (𝑚 <Q ((*Q𝐶) ·Q 𝐵) ↔ (𝐶 ·Q 𝑚) <Q 𝐵))
5335, 52anbi12d 442 . . . . 5 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → ((((*Q𝐶) ·Q 𝐴) <Q 𝑚𝑚 <Q ((*Q𝐶) ·Q 𝐵)) ↔ (𝐴 <Q (𝐶 ·Q 𝑚) ∧ (𝐶 ·Q 𝑚) <Q 𝐵)))
54 mulcomnqg 6481 . . . . . . . 8 ((𝐶Q𝑚Q) → (𝐶 ·Q 𝑚) = (𝑚 ·Q 𝐶))
5519, 18, 54syl2anc 391 . . . . . . 7 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → (𝐶 ·Q 𝑚) = (𝑚 ·Q 𝐶))
5655breq2d 3776 . . . . . 6 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → (𝐴 <Q (𝐶 ·Q 𝑚) ↔ 𝐴 <Q (𝑚 ·Q 𝐶)))
5755breq1d 3774 . . . . . 6 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → ((𝐶 ·Q 𝑚) <Q 𝐵 ↔ (𝑚 ·Q 𝐶) <Q 𝐵))
5856, 57anbi12d 442 . . . . 5 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → ((𝐴 <Q (𝐶 ·Q 𝑚) ∧ (𝐶 ·Q 𝑚) <Q 𝐵) ↔ (𝐴 <Q (𝑚 ·Q 𝐶) ∧ (𝑚 ·Q 𝐶) <Q 𝐵)))
5953, 58bitrd 177 . . . 4 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → ((((*Q𝐶) ·Q 𝐴) <Q 𝑚𝑚 <Q ((*Q𝐶) ·Q 𝐵)) ↔ (𝐴 <Q (𝑚 ·Q 𝐶) ∧ (𝑚 ·Q 𝐶) <Q 𝐵)))
6059biimpd 132 . . 3 (((𝐴 <Q 𝐵𝐶Q) ∧ 𝑚Q) → ((((*Q𝐶) ·Q 𝐴) <Q 𝑚𝑚 <Q ((*Q𝐶) ·Q 𝐵)) → (𝐴 <Q (𝑚 ·Q 𝐶) ∧ (𝑚 ·Q 𝐶) <Q 𝐵)))
6160reximdva 2421 . 2 ((𝐴 <Q 𝐵𝐶Q) → (∃𝑚Q (((*Q𝐶) ·Q 𝐴) <Q 𝑚𝑚 <Q ((*Q𝐶) ·Q 𝐵)) → ∃𝑚Q (𝐴 <Q (𝑚 ·Q 𝐶) ∧ (𝑚 ·Q 𝐶) <Q 𝐵)))
6213, 61mpd 13 1 ((𝐴 <Q 𝐵𝐶Q) → ∃𝑚Q (𝐴 <Q (𝑚 ·Q 𝐶) ∧ (𝑚 ·Q 𝐶) <Q 𝐵))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 97   ↔ wb 98   = wceq 1243   ∈ wcel 1393  ∃wrex 2307   class class class wbr 3764  ‘cfv 4902  (class class class)co 5512  Qcnq 6378  1Qc1q 6379   ·Q cmq 6381  *Qcrq 6382
 Copyright terms: Public domain W3C validator