ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  appdiv0nq GIF version

Theorem appdiv0nq 6662
Description: Approximate division for positive rationals. This can be thought of as a variation of appdivnq 6661 in which 𝐴 is zero, although it can be stated and proved in terms of positive rationals alone, without zero as such. (Contributed by Jim Kingdon, 9-Dec-2019.)
Assertion
Ref Expression
appdiv0nq ((𝐵Q𝐶Q) → ∃𝑚Q (𝑚 ·Q 𝐶) <Q 𝐵)
Distinct variable groups:   𝐵,𝑚   𝐶,𝑚

Proof of Theorem appdiv0nq
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nsmallnqq 6510 . . 3 (𝐵Q → ∃𝑥Q 𝑥 <Q 𝐵)
21adantr 261 . 2 ((𝐵Q𝐶Q) → ∃𝑥Q 𝑥 <Q 𝐵)
3 appdivnq 6661 . . . . 5 ((𝑥 <Q 𝐵𝐶Q) → ∃𝑚Q (𝑥 <Q (𝑚 ·Q 𝐶) ∧ (𝑚 ·Q 𝐶) <Q 𝐵))
4 simpr 103 . . . . . 6 ((𝑥 <Q (𝑚 ·Q 𝐶) ∧ (𝑚 ·Q 𝐶) <Q 𝐵) → (𝑚 ·Q 𝐶) <Q 𝐵)
54reximi 2416 . . . . 5 (∃𝑚Q (𝑥 <Q (𝑚 ·Q 𝐶) ∧ (𝑚 ·Q 𝐶) <Q 𝐵) → ∃𝑚Q (𝑚 ·Q 𝐶) <Q 𝐵)
63, 5syl 14 . . . 4 ((𝑥 <Q 𝐵𝐶Q) → ∃𝑚Q (𝑚 ·Q 𝐶) <Q 𝐵)
76ancoms 255 . . 3 ((𝐶Q𝑥 <Q 𝐵) → ∃𝑚Q (𝑚 ·Q 𝐶) <Q 𝐵)
87ad2ant2l 477 . 2 (((𝐵Q𝐶Q) ∧ (𝑥Q𝑥 <Q 𝐵)) → ∃𝑚Q (𝑚 ·Q 𝐶) <Q 𝐵)
92, 8rexlimddv 2437 1 ((𝐵Q𝐶Q) → ∃𝑚Q (𝑚 ·Q 𝐶) <Q 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wcel 1393  wrex 2307   class class class wbr 3764  (class class class)co 5512  Qcnq 6378   ·Q cmq 6381   <Q cltq 6383
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-1o 6001  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451
This theorem is referenced by:  prmuloc  6664
  Copyright terms: Public domain W3C validator