![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > anim12ci | GIF version |
Description: Variant of anim12i 321 with commutation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
anim12i.1 | ⊢ (φ → ψ) |
anim12i.2 | ⊢ (χ → θ) |
Ref | Expression |
---|---|
anim12ci | ⊢ ((φ ∧ χ) → (θ ∧ ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anim12i.2 | . . 3 ⊢ (χ → θ) | |
2 | anim12i.1 | . . 3 ⊢ (φ → ψ) | |
3 | 1, 2 | anim12i 321 | . 2 ⊢ ((χ ∧ φ) → (θ ∧ ψ)) |
4 | 3 | ancoms 255 | 1 ⊢ ((φ ∧ χ) → (θ ∧ ψ)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 97 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 |
This theorem is referenced by: dfco2a 4764 funco 4883 fliftval 5383 ltsrprg 6675 difelfznle 8763 |
Copyright terms: Public domain | W3C validator |