ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ancr Structured version   GIF version

Theorem ancr 304
Description: Conjoin antecedent to right of consequent. (Contributed by NM, 15-Aug-1994.)
Assertion
Ref Expression
ancr ((φψ) → (φ → (ψ φ)))

Proof of Theorem ancr
StepHypRef Expression
1 pm3.21 251 . 2 (φ → (ψ → (ψ φ)))
21a2i 11 1 ((φψ) → (φ → (ψ φ)))
Colors of variables: wff set class
Syntax hints:  wi 4   wa 97
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia3 101
This theorem is referenced by:  bimsc1  869  ssddif  3165  reupick2  3217  intmin4  3634
  Copyright terms: Public domain W3C validator