ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ancomd Structured version   GIF version

Theorem ancomd 254
Description: Commutation of conjuncts in consequent. (Contributed by Jeff Hankins, 14-Aug-2009.)
Hypothesis
Ref Expression
ancomd.1 (φ → (ψ χ))
Assertion
Ref Expression
ancomd (φ → (χ ψ))

Proof of Theorem ancomd
StepHypRef Expression
1 ancomd.1 . 2 (φ → (ψ χ))
2 ancom 253 . 2 ((ψ χ) ↔ (χ ψ))
31, 2sylib 127 1 (φ → (χ ψ))
Colors of variables: wff set class
Syntax hints:  wi 4   wa 97
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101
This theorem depends on definitions:  df-bi 110
This theorem is referenced by:  elres  4589  relbrcnvg  4647  fvelrnb  5164  relelec  6082  prcdnql  6466  1idpru  6566  gt0srpr  6656
  Copyright terms: Public domain W3C validator