![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > anass | GIF version |
Description: Associative law for conjunction. Theorem *4.32 of [WhiteheadRussell] p. 118. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
Ref | Expression |
---|---|
anass | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → (𝜑 ∧ (𝜓 ∧ 𝜒))) | |
2 | 1 | anassrs 380 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → (𝜑 ∧ (𝜓 ∧ 𝜒))) |
3 | id 19 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
4 | 3 | anasss 379 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → ((𝜑 ∧ 𝜓) ∧ 𝜒)) |
5 | 2, 4 | impbii 117 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 97 ↔ wb 98 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 |
This theorem depends on definitions: df-bi 110 |
This theorem is referenced by: mpan10 443 an12 495 an32 496 an13 497 an31 498 an4 520 3anass 889 sbidm 1731 4exdistr 1793 2sb5 1859 2sb5rf 1865 sbel2x 1874 r2exf 2342 r19.41 2465 ceqsex3v 2596 ceqsrex2v 2676 rexrab 2704 rexrab2 2708 rexss 3007 inass 3147 difin2 3199 difrab 3211 reupick3 3222 inssdif0im 3291 rexdifsn 3499 unidif0 3920 bnd2 3926 eqvinop 3980 copsexg 3981 uniuni 4183 rabxp 4380 elvvv 4403 rexiunxp 4478 resopab2 4655 ssrnres 4763 elxp4 4808 elxp5 4809 cnvresima 4810 mptpreima 4814 coass 4839 dff1o2 5131 eqfnfv3 5267 rexsupp 5291 isoini 5457 f1oiso 5465 oprabid 5537 dfoprab2 5552 mpt2eq123 5564 mpt2mptx 5595 resoprab2 5598 ovi3 5637 oprabex3 5756 brtpos2 5866 xpsnen 6295 xpcomco 6300 xpassen 6304 ltexpi 6435 enq0enq 6529 enq0tr 6532 prnmaxl 6586 prnminu 6587 genpdflem 6605 ltexprlemm 6698 rexuz 8523 rexuz2 8524 rexrp 8605 elixx3g 8770 elfz2 8881 fzdifsuc 8943 fzind2 9095 |
Copyright terms: Public domain | W3C validator |