ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  an31s GIF version

Theorem an31s 504
Description: Swap two conjuncts in antecedent. (Contributed by NM, 31-May-2006.)
Hypothesis
Ref Expression
an32s.1 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
Assertion
Ref Expression
an31s (((𝜒𝜓) ∧ 𝜑) → 𝜃)

Proof of Theorem an31s
StepHypRef Expression
1 an32s.1 . . . 4 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
21exp31 346 . . 3 (𝜑 → (𝜓 → (𝜒𝜃)))
32com13 74 . 2 (𝜒 → (𝜓 → (𝜑𝜃)))
43imp31 243 1 (((𝜒𝜓) ∧ 𝜑) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101
This theorem is referenced by:  genpassl  6603  genpassu  6604
  Copyright terms: Public domain W3C validator