ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  alrimdv Structured version   GIF version

Theorem alrimdv 1753
Description: Deduction from Theorem 19.21 of [Margaris] p. 90. (Contributed by NM, 10-Feb-1997.)
Hypothesis
Ref Expression
alrimdv.1 (φ → (ψχ))
Assertion
Ref Expression
alrimdv (φ → (ψxχ))
Distinct variable groups:   φ,x   ψ,x
Allowed substitution hint:   χ(x)

Proof of Theorem alrimdv
StepHypRef Expression
1 ax-17 1416 . 2 (φxφ)
2 ax-17 1416 . 2 (ψxψ)
3 alrimdv.1 . 2 (φ → (ψχ))
41, 2, 3alrimdh 1365 1 (φ → (ψxχ))
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1240
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-5 1333  ax-gen 1335  ax-17 1416
This theorem is referenced by:  funcnvuni  4911  fliftfun  5379  genprndl  6504  genprndu  6505  bj-inf2vnlem2  9431
  Copyright terms: Public domain W3C validator