ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  alimdv Structured version   GIF version

Theorem alimdv 1756
Description: Deduction from Theorem 19.20 of [Margaris] p. 90. (Contributed by NM, 3-Apr-1994.)
Hypothesis
Ref Expression
alimdv.1 (φ → (ψχ))
Assertion
Ref Expression
alimdv (φ → (xψxχ))
Distinct variable group:   φ,x
Allowed substitution hints:   ψ(x)   χ(x)

Proof of Theorem alimdv
StepHypRef Expression
1 ax-17 1416 . 2 (φxφ)
2 alimdv.1 . 2 (φ → (ψχ))
31, 2alimdh 1353 1 (φ → (xψxχ))
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1240
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-5 1333  ax-gen 1335  ax-17 1416
This theorem is referenced by:  2alimdv  1758  moim  1961  ralimdv2  2383  sstr2  2946  reuss2  3211  ssuni  3593  disjss2  3739  disjss1  3742  soss  4042  alxfr  4159  ssrel  4371  ssrel2  4373  ssrelrel  4383  iotaval  4821
  Copyright terms: Public domain W3C validator