Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > alcoms | GIF version |
Description: Swap quantifiers in an antecedent. (Contributed by NM, 11-May-1993.) |
Ref | Expression |
---|---|
alcoms.1 | ⊢ (∀𝑥∀𝑦𝜑 → 𝜓) |
Ref | Expression |
---|---|
alcoms | ⊢ (∀𝑦∀𝑥𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-7 1337 | . 2 ⊢ (∀𝑦∀𝑥𝜑 → ∀𝑥∀𝑦𝜑) | |
2 | alcoms.1 | . 2 ⊢ (∀𝑥∀𝑦𝜑 → 𝜓) | |
3 | 1, 2 | syl 14 | 1 ⊢ (∀𝑦∀𝑥𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1241 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-7 1337 |
This theorem is referenced by: bj-nfalt 9904 strcollnft 10109 |
Copyright terms: Public domain | W3C validator |