ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  alcoms GIF version

Theorem alcoms 1365
Description: Swap quantifiers in an antecedent. (Contributed by NM, 11-May-1993.)
Hypothesis
Ref Expression
alcoms.1 (∀𝑥𝑦𝜑𝜓)
Assertion
Ref Expression
alcoms (∀𝑦𝑥𝜑𝜓)

Proof of Theorem alcoms
StepHypRef Expression
1 ax-7 1337 . 2 (∀𝑦𝑥𝜑 → ∀𝑥𝑦𝜑)
2 alcoms.1 . 2 (∀𝑥𝑦𝜑𝜓)
31, 2syl 14 1 (∀𝑦𝑥𝜑𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1241
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-7 1337
This theorem is referenced by:  bj-nfalt  9904  strcollnft  10109
  Copyright terms: Public domain W3C validator