ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  albi Structured version   GIF version

Theorem albi 1354
Description: Theorem 19.15 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
albi (x(φψ) → (xφxψ))

Proof of Theorem albi
StepHypRef Expression
1 bi1 111 . . 3 ((φψ) → (φψ))
21al2imi 1344 . 2 (x(φψ) → (xφxψ))
3 bi2 121 . . 3 ((φψ) → (ψφ))
43al2imi 1344 . 2 (x(φψ) → (xψxφ))
52, 4impbid 120 1 (x(φψ) → (xφxψ))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 98  wal 1240
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1333  ax-gen 1335
This theorem depends on definitions:  df-bi 110
This theorem is referenced by:  albii  1356  albidh  1366  19.16  1444  19.17  1445  intmin4  3634  dfiin2g  3681
  Copyright terms: Public domain W3C validator