Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  addnqpr1lemru Structured version   GIF version

 Description: Lemma for addnqpr1 6541. The reverse subset relationship for the upper cut. (Contributed by Jim Kingdon, 28-Apr-2020.)
Assertion
Ref Expression
addnqpr1lemru (A Q → (2nd ‘(⟨{𝑙𝑙 <Q A}, {uA <Q u}⟩ +P 1P)) ⊆ (2nd ‘⟨{𝑙𝑙 <Q (A +Q 1Q)}, {u ∣ (A +Q 1Q) <Q u}⟩))
Distinct variable group:   A,𝑙,u

Dummy variables f g 𝑟 𝑠 𝑡 x y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nqprlu 6530 . . . . . 6 (A Q → ⟨{𝑙𝑙 <Q A}, {uA <Q u}⟩ P)
2 1pr 6534 . . . . . 6 1P P
3 df-iplp 6450 . . . . . . 7 +P = (x P, y P ↦ ⟨{f Qg Q Q (g (1stx) (1sty) f = (g +Q ))}, {f Qg Q Q (g (2ndx) (2ndy) f = (g +Q ))}⟩)
4 addclnq 6359 . . . . . . 7 ((g Q Q) → (g +Q ) Q)
53, 4genpelvu 6495 . . . . . 6 ((⟨{𝑙𝑙 <Q A}, {uA <Q u}⟩ P 1P P) → (𝑟 (2nd ‘(⟨{𝑙𝑙 <Q A}, {uA <Q u}⟩ +P 1P)) ↔ 𝑠 (2nd ‘⟨{𝑙𝑙 <Q A}, {uA <Q u}⟩)𝑡 (2nd ‘1P)𝑟 = (𝑠 +Q 𝑡)))
61, 2, 5sylancl 392 . . . . 5 (A Q → (𝑟 (2nd ‘(⟨{𝑙𝑙 <Q A}, {uA <Q u}⟩ +P 1P)) ↔ 𝑠 (2nd ‘⟨{𝑙𝑙 <Q A}, {uA <Q u}⟩)𝑡 (2nd ‘1P)𝑟 = (𝑠 +Q 𝑡)))
76biimpa 280 . . . 4 ((A Q 𝑟 (2nd ‘(⟨{𝑙𝑙 <Q A}, {uA <Q u}⟩ +P 1P))) → 𝑠 (2nd ‘⟨{𝑙𝑙 <Q A}, {uA <Q u}⟩)𝑡 (2nd ‘1P)𝑟 = (𝑠 +Q 𝑡))
8 vex 2554 . . . . . . . . . . . . 13 𝑠 V
9 breq2 3759 . . . . . . . . . . . . 13 (u = 𝑠 → (A <Q uA <Q 𝑠))
10 ltnqex 6531 . . . . . . . . . . . . . 14 {𝑙𝑙 <Q A} V
11 gtnqex 6532 . . . . . . . . . . . . . 14 {uA <Q u} V
1210, 11op2nd 5716 . . . . . . . . . . . . 13 (2nd ‘⟨{𝑙𝑙 <Q A}, {uA <Q u}⟩) = {uA <Q u}
138, 9, 12elab2 2684 . . . . . . . . . . . 12 (𝑠 (2nd ‘⟨{𝑙𝑙 <Q A}, {uA <Q u}⟩) ↔ A <Q 𝑠)
1413biimpi 113 . . . . . . . . . . 11 (𝑠 (2nd ‘⟨{𝑙𝑙 <Q A}, {uA <Q u}⟩) → A <Q 𝑠)
1514ad2antrl 459 . . . . . . . . . 10 (((A Q 𝑟 (2nd ‘(⟨{𝑙𝑙 <Q A}, {uA <Q u}⟩ +P 1P))) (𝑠 (2nd ‘⟨{𝑙𝑙 <Q A}, {uA <Q u}⟩) 𝑡 (2nd ‘1P))) → A <Q 𝑠)
1615adantr 261 . . . . . . . . 9 ((((A Q 𝑟 (2nd ‘(⟨{𝑙𝑙 <Q A}, {uA <Q u}⟩ +P 1P))) (𝑠 (2nd ‘⟨{𝑙𝑙 <Q A}, {uA <Q u}⟩) 𝑡 (2nd ‘1P))) 𝑟 = (𝑠 +Q 𝑡)) → A <Q 𝑠)
17 vex 2554 . . . . . . . . . . . . 13 𝑡 V
18 breq2 3759 . . . . . . . . . . . . 13 (u = 𝑡 → (1Q <Q u ↔ 1Q <Q 𝑡))
19 1pru 6536 . . . . . . . . . . . . 13 (2nd ‘1P) = {u ∣ 1Q <Q u}
2017, 18, 19elab2 2684 . . . . . . . . . . . 12 (𝑡 (2nd ‘1P) ↔ 1Q <Q 𝑡)
2120biimpi 113 . . . . . . . . . . 11 (𝑡 (2nd ‘1P) → 1Q <Q 𝑡)
2221ad2antll 460 . . . . . . . . . 10 (((A Q 𝑟 (2nd ‘(⟨{𝑙𝑙 <Q A}, {uA <Q u}⟩ +P 1P))) (𝑠 (2nd ‘⟨{𝑙𝑙 <Q A}, {uA <Q u}⟩) 𝑡 (2nd ‘1P))) → 1Q <Q 𝑡)
2322adantr 261 . . . . . . . . 9 ((((A Q 𝑟 (2nd ‘(⟨{𝑙𝑙 <Q A}, {uA <Q u}⟩ +P 1P))) (𝑠 (2nd ‘⟨{𝑙𝑙 <Q A}, {uA <Q u}⟩) 𝑡 (2nd ‘1P))) 𝑟 = (𝑠 +Q 𝑡)) → 1Q <Q 𝑡)
24 ltrelnq 6349 . . . . . . . . . . . 12 <Q ⊆ (Q × Q)
2524brel 4335 . . . . . . . . . . 11 (A <Q 𝑠 → (A Q 𝑠 Q))
2616, 25syl 14 . . . . . . . . . 10 ((((A Q 𝑟 (2nd ‘(⟨{𝑙𝑙 <Q A}, {uA <Q u}⟩ +P 1P))) (𝑠 (2nd ‘⟨{𝑙𝑙 <Q A}, {uA <Q u}⟩) 𝑡 (2nd ‘1P))) 𝑟 = (𝑠 +Q 𝑡)) → (A Q 𝑠 Q))
2724brel 4335 . . . . . . . . . . 11 (1Q <Q 𝑡 → (1Q Q 𝑡 Q))
2823, 27syl 14 . . . . . . . . . 10 ((((A Q 𝑟 (2nd ‘(⟨{𝑙𝑙 <Q A}, {uA <Q u}⟩ +P 1P))) (𝑠 (2nd ‘⟨{𝑙𝑙 <Q A}, {uA <Q u}⟩) 𝑡 (2nd ‘1P))) 𝑟 = (𝑠 +Q 𝑡)) → (1Q Q 𝑡 Q))
29 lt2addnq 6388 . . . . . . . . . 10 (((A Q 𝑠 Q) (1Q Q 𝑡 Q)) → ((A <Q 𝑠 1Q <Q 𝑡) → (A +Q 1Q) <Q (𝑠 +Q 𝑡)))
3026, 28, 29syl2anc 391 . . . . . . . . 9 ((((A Q 𝑟 (2nd ‘(⟨{𝑙𝑙 <Q A}, {uA <Q u}⟩ +P 1P))) (𝑠 (2nd ‘⟨{𝑙𝑙 <Q A}, {uA <Q u}⟩) 𝑡 (2nd ‘1P))) 𝑟 = (𝑠 +Q 𝑡)) → ((A <Q 𝑠 1Q <Q 𝑡) → (A +Q 1Q) <Q (𝑠 +Q 𝑡)))
3116, 23, 30mp2and 409 . . . . . . . 8 ((((A Q 𝑟 (2nd ‘(⟨{𝑙𝑙 <Q A}, {uA <Q u}⟩ +P 1P))) (𝑠 (2nd ‘⟨{𝑙𝑙 <Q A}, {uA <Q u}⟩) 𝑡 (2nd ‘1P))) 𝑟 = (𝑠 +Q 𝑡)) → (A +Q 1Q) <Q (𝑠 +Q 𝑡))
32 breq2 3759 . . . . . . . . 9 (𝑟 = (𝑠 +Q 𝑡) → ((A +Q 1Q) <Q 𝑟 ↔ (A +Q 1Q) <Q (𝑠 +Q 𝑡)))
3332adantl 262 . . . . . . . 8 ((((A Q 𝑟 (2nd ‘(⟨{𝑙𝑙 <Q A}, {uA <Q u}⟩ +P 1P))) (𝑠 (2nd ‘⟨{𝑙𝑙 <Q A}, {uA <Q u}⟩) 𝑡 (2nd ‘1P))) 𝑟 = (𝑠 +Q 𝑡)) → ((A +Q 1Q) <Q 𝑟 ↔ (A +Q 1Q) <Q (𝑠 +Q 𝑡)))
3431, 33mpbird 156 . . . . . . 7 ((((A Q 𝑟 (2nd ‘(⟨{𝑙𝑙 <Q A}, {uA <Q u}⟩ +P 1P))) (𝑠 (2nd ‘⟨{𝑙𝑙 <Q A}, {uA <Q u}⟩) 𝑡 (2nd ‘1P))) 𝑟 = (𝑠 +Q 𝑡)) → (A +Q 1Q) <Q 𝑟)
35 vex 2554 . . . . . . . 8 𝑟 V
36 breq2 3759 . . . . . . . 8 (u = 𝑟 → ((A +Q 1Q) <Q u ↔ (A +Q 1Q) <Q 𝑟))
37 ltnqex 6531 . . . . . . . . 9 {𝑙𝑙 <Q (A +Q 1Q)} V
38 gtnqex 6532 . . . . . . . . 9 {u ∣ (A +Q 1Q) <Q u} V
3937, 38op2nd 5716 . . . . . . . 8 (2nd ‘⟨{𝑙𝑙 <Q (A +Q 1Q)}, {u ∣ (A +Q 1Q) <Q u}⟩) = {u ∣ (A +Q 1Q) <Q u}
4035, 36, 39elab2 2684 . . . . . . 7 (𝑟 (2nd ‘⟨{𝑙𝑙 <Q (A +Q 1Q)}, {u ∣ (A +Q 1Q) <Q u}⟩) ↔ (A +Q 1Q) <Q 𝑟)
4134, 40sylibr 137 . . . . . 6 ((((A Q 𝑟 (2nd ‘(⟨{𝑙𝑙 <Q A}, {uA <Q u}⟩ +P 1P))) (𝑠 (2nd ‘⟨{𝑙𝑙 <Q A}, {uA <Q u}⟩) 𝑡 (2nd ‘1P))) 𝑟 = (𝑠 +Q 𝑡)) → 𝑟 (2nd ‘⟨{𝑙𝑙 <Q (A +Q 1Q)}, {u ∣ (A +Q 1Q) <Q u}⟩))
4241ex 108 . . . . 5 (((A Q 𝑟 (2nd ‘(⟨{𝑙𝑙 <Q A}, {uA <Q u}⟩ +P 1P))) (𝑠 (2nd ‘⟨{𝑙𝑙 <Q A}, {uA <Q u}⟩) 𝑡 (2nd ‘1P))) → (𝑟 = (𝑠 +Q 𝑡) → 𝑟 (2nd ‘⟨{𝑙𝑙 <Q (A +Q 1Q)}, {u ∣ (A +Q 1Q) <Q u}⟩)))
4342rexlimdvva 2434 . . . 4 ((A Q 𝑟 (2nd ‘(⟨{𝑙𝑙 <Q A}, {uA <Q u}⟩ +P 1P))) → (𝑠 (2nd ‘⟨{𝑙𝑙 <Q A}, {uA <Q u}⟩)𝑡 (2nd ‘1P)𝑟 = (𝑠 +Q 𝑡) → 𝑟 (2nd ‘⟨{𝑙𝑙 <Q (A +Q 1Q)}, {u ∣ (A +Q 1Q) <Q u}⟩)))
447, 43mpd 13 . . 3 ((A Q 𝑟 (2nd ‘(⟨{𝑙𝑙 <Q A}, {uA <Q u}⟩ +P 1P))) → 𝑟 (2nd ‘⟨{𝑙𝑙 <Q (A +Q 1Q)}, {u ∣ (A +Q 1Q) <Q u}⟩))
4544ex 108 . 2 (A Q → (𝑟 (2nd ‘(⟨{𝑙𝑙 <Q A}, {uA <Q u}⟩ +P 1P)) → 𝑟 (2nd ‘⟨{𝑙𝑙 <Q (A +Q 1Q)}, {u ∣ (A +Q 1Q) <Q u}⟩)))
4645ssrdv 2945 1 (A Q → (2nd ‘(⟨{𝑙𝑙 <Q A}, {uA <Q u}⟩ +P 1P)) ⊆ (2nd ‘⟨{𝑙𝑙 <Q (A +Q 1Q)}, {u ∣ (A +Q 1Q) <Q u}⟩))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 97   ↔ wb 98   = wceq 1242   ∈ wcel 1390  {cab 2023  ∃wrex 2301   ⊆ wss 2911  ⟨cop 3370   class class class wbr 3755  ‘cfv 4845  (class class class)co 5455  2nd c2nd 5708  Qcnq 6264  1Qc1q 6265   +Q cplq 6266
 Copyright terms: Public domain W3C validator