![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > addge02 | GIF version |
Description: A number is less than or equal to itself plus a nonnegative number. (Contributed by NM, 27-Jul-2005.) |
Ref | Expression |
---|---|
addge02 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ 𝐵 ↔ 𝐴 ≤ (𝐵 + 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addge01 7467 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ 𝐵 ↔ 𝐴 ≤ (𝐴 + 𝐵))) | |
2 | recn 7014 | . . . 4 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
3 | recn 7014 | . . . 4 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℂ) | |
4 | addcom 7150 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) | |
5 | 2, 3, 4 | syl2an 273 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
6 | 5 | breq2d 3776 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ (𝐴 + 𝐵) ↔ 𝐴 ≤ (𝐵 + 𝐴))) |
7 | 1, 6 | bitrd 177 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ 𝐵 ↔ 𝐴 ≤ (𝐵 + 𝐴))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 97 ↔ wb 98 = wceq 1243 ∈ wcel 1393 class class class wbr 3764 (class class class)co 5512 ℂcc 6887 ℝcr 6888 0cc0 6889 + caddc 6892 ≤ cle 7061 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-13 1404 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 ax-pr 3944 ax-un 4170 ax-setind 4262 ax-cnex 6975 ax-resscn 6976 ax-1cn 6977 ax-1re 6978 ax-icn 6979 ax-addcl 6980 ax-addrcl 6981 ax-mulcl 6982 ax-addcom 6984 ax-addass 6986 ax-i2m1 6989 ax-0id 6992 ax-rnegex 6993 ax-pre-ltadd 7000 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-fal 1249 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ne 2206 df-nel 2207 df-ral 2311 df-rex 2312 df-rab 2315 df-v 2559 df-dif 2920 df-un 2922 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-uni 3581 df-br 3765 df-opab 3819 df-xp 4351 df-cnv 4353 df-iota 4867 df-fv 4910 df-ov 5515 df-pnf 7062 df-mnf 7063 df-xr 7064 df-ltxr 7065 df-le 7066 |
This theorem is referenced by: add20 7469 addge02d 7525 nn0addge2 8229 difelfznle 8993 subfzo0 9097 |
Copyright terms: Public domain | W3C validator |