Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > addcomli | GIF version |
Description: Addition commutes. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
mul.1 | ⊢ 𝐴 ∈ ℂ |
mul.2 | ⊢ 𝐵 ∈ ℂ |
addcomli.2 | ⊢ (𝐴 + 𝐵) = 𝐶 |
Ref | Expression |
---|---|
addcomli | ⊢ (𝐵 + 𝐴) = 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mul.2 | . . 3 ⊢ 𝐵 ∈ ℂ | |
2 | mul.1 | . . 3 ⊢ 𝐴 ∈ ℂ | |
3 | 1, 2 | addcomi 7157 | . 2 ⊢ (𝐵 + 𝐴) = (𝐴 + 𝐵) |
4 | addcomli.2 | . 2 ⊢ (𝐴 + 𝐵) = 𝐶 | |
5 | 3, 4 | eqtri 2060 | 1 ⊢ (𝐵 + 𝐴) = 𝐶 |
Colors of variables: wff set class |
Syntax hints: = wceq 1243 ∈ wcel 1393 (class class class)co 5512 ℂcc 6887 + caddc 6892 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1336 ax-gen 1338 ax-4 1400 ax-17 1419 ax-ext 2022 ax-addcom 6984 |
This theorem depends on definitions: df-bi 110 df-cleq 2033 |
This theorem is referenced by: negsubdi2i 7297 1p2e3 8044 peano2z 8281 4t4e16 8440 6t3e18 8445 6t5e30 8447 7t3e21 8450 7t4e28 8451 7t6e42 8453 7t7e49 8454 8t3e24 8456 8t4e32 8457 8t5e40 8458 8t8e64 8461 9t3e27 8463 9t4e36 8464 9t5e45 8465 9t6e54 8466 9t7e63 8467 9t8e72 8468 9t9e81 8469 |
Copyright terms: Public domain | W3C validator |