Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > addcomi | GIF version |
Description: Addition commutes. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013.) |
Ref | Expression |
---|---|
mul.1 | ⊢ 𝐴 ∈ ℂ |
mul.2 | ⊢ 𝐵 ∈ ℂ |
Ref | Expression |
---|---|
addcomi | ⊢ (𝐴 + 𝐵) = (𝐵 + 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mul.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | mul.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
3 | addcom 7150 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) | |
4 | 1, 2, 3 | mp2an 402 | 1 ⊢ (𝐴 + 𝐵) = (𝐵 + 𝐴) |
Colors of variables: wff set class |
Syntax hints: = wceq 1243 ∈ wcel 1393 (class class class)co 5512 ℂcc 6887 + caddc 6892 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia3 101 ax-addcom 6984 |
This theorem is referenced by: addcomli 7158 add42i 7177 mvlladdi 7229 3m1e2 8036 fztpval 8945 fzo0to42pr 9076 |
Copyright terms: Public domain | W3C validator |