ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addcomi GIF version

Theorem addcomi 7157
Description: Addition commutes. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013.)
Hypotheses
Ref Expression
mul.1 𝐴 ∈ ℂ
mul.2 𝐵 ∈ ℂ
Assertion
Ref Expression
addcomi (𝐴 + 𝐵) = (𝐵 + 𝐴)

Proof of Theorem addcomi
StepHypRef Expression
1 mul.1 . 2 𝐴 ∈ ℂ
2 mul.2 . 2 𝐵 ∈ ℂ
3 addcom 7150 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
41, 2, 3mp2an 402 1 (𝐴 + 𝐵) = (𝐵 + 𝐴)
Colors of variables: wff set class
Syntax hints:   = wceq 1243  wcel 1393  (class class class)co 5512  cc 6887   + caddc 6892
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia3 101  ax-addcom 6984
This theorem is referenced by:  addcomli  7158  add42i  7177  mvlladdi  7229  3m1e2  8036  fztpval  8945  fzo0to42pr  9076
  Copyright terms: Public domain W3C validator