ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addcomi GIF version

Theorem addcomi 6954
Description: Addition commutes. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013.)
Hypotheses
Ref Expression
mul.1 A
mul.2 B
Assertion
Ref Expression
addcomi (A + B) = (B + A)

Proof of Theorem addcomi
StepHypRef Expression
1 mul.1 . 2 A
2 mul.2 . 2 B
3 addcom 6947 . 2 ((A B ℂ) → (A + B) = (B + A))
41, 2, 3mp2an 402 1 (A + B) = (B + A)
Colors of variables: wff set class
Syntax hints:   = wceq 1242   wcel 1390  (class class class)co 5455  cc 6709   + caddc 6714
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia3 101  ax-addcom 6783
This theorem is referenced by:  addcomli  6955  add42i  6974  mvlladdi  7025  3m1e2  7814  fztpval  8715  fzo0to42pr  8846
  Copyright terms: Public domain W3C validator