Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  acexmidlem1 GIF version

Theorem acexmidlem1 5508
 Description: Lemma for acexmid 5511. List the cases identified in acexmidlemcase 5507 and hook them up to the lemmas which handle each case. (Contributed by Jim Kingdon, 7-Aug-2019.)
Hypotheses
Ref Expression
acexmidlem.a 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}
acexmidlem.b 𝐵 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝜑)}
acexmidlem.c 𝐶 = {𝐴, 𝐵}
Assertion
Ref Expression
acexmidlem1 (∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → (𝜑 ∨ ¬ 𝜑))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑣,𝑢,𝐴   𝑥,𝐵,𝑦,𝑧,𝑣,𝑢   𝑥,𝐶,𝑦,𝑧,𝑣,𝑢   𝜑,𝑥,𝑦,𝑧,𝑣,𝑢

Proof of Theorem acexmidlem1
StepHypRef Expression
1 acexmidlem.a . . 3 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}
2 acexmidlem.b . . 3 𝐵 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝜑)}
3 acexmidlem.c . . 3 𝐶 = {𝐴, 𝐵}
41, 2, 3acexmidlemcase 5507 . 2 (∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → ({∅} ∈ 𝐴 ∨ ∅ ∈ 𝐵 ∨ ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅})))
51, 2, 3acexmidlema 5503 . . . 4 ({∅} ∈ 𝐴𝜑)
65orcd 652 . . 3 ({∅} ∈ 𝐴 → (𝜑 ∨ ¬ 𝜑))
71, 2, 3acexmidlemb 5504 . . . 4 (∅ ∈ 𝐵𝜑)
87orcd 652 . . 3 (∅ ∈ 𝐵 → (𝜑 ∨ ¬ 𝜑))
91, 2, 3acexmidlemab 5506 . . . 4 (((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅}) → ¬ 𝜑)
109olcd 653 . . 3 (((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅}) → (𝜑 ∨ ¬ 𝜑))
116, 8, 103jaoi 1198 . 2 (({∅} ∈ 𝐴 ∨ ∅ ∈ 𝐵 ∨ ((𝑣𝐴𝑢𝑦 (𝐴𝑢𝑣𝑢)) = ∅ ∧ (𝑣𝐵𝑢𝑦 (𝐵𝑢𝑣𝑢)) = {∅})) → (𝜑 ∨ ¬ 𝜑))
124, 11syl 14 1 (∀𝑧𝐶 ∃!𝑣𝑧𝑢𝑦 (𝑧𝑢𝑣𝑢) → (𝜑 ∨ ¬ 𝜑))
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 97   ∨ wo 629   ∨ w3o 884   = wceq 1243   ∈ wcel 1393  ∀wral 2306  ∃wrex 2307  ∃!wreu 2308  {crab 2310  ∅c0 3224  {csn 3375  {cpr 3376  ℩crio 5467 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-nul 3883  ax-pow 3927 This theorem depends on definitions:  df-bi 110  df-3or 886  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-uni 3581  df-tr 3855  df-iord 4103  df-on 4105  df-suc 4108  df-iota 4867  df-riota 5468 This theorem is referenced by:  acexmidlem2  5509
 Copyright terms: Public domain W3C validator