![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > abf | GIF version |
Description: A class builder with a false argument is empty. (Contributed by NM, 20-Jan-2012.) |
Ref | Expression |
---|---|
abf.1 | ⊢ ¬ 𝜑 |
Ref | Expression |
---|---|
abf | ⊢ {𝑥 ∣ 𝜑} = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abf.1 | . . . 4 ⊢ ¬ 𝜑 | |
2 | 1 | pm2.21i 575 | . . 3 ⊢ (𝜑 → 𝑥 ∈ ∅) |
3 | 2 | abssi 3015 | . 2 ⊢ {𝑥 ∣ 𝜑} ⊆ ∅ |
4 | ss0 3257 | . 2 ⊢ ({𝑥 ∣ 𝜑} ⊆ ∅ → {𝑥 ∣ 𝜑} = ∅) | |
5 | 3, 4 | ax-mp 7 | 1 ⊢ {𝑥 ∣ 𝜑} = ∅ |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 = wceq 1243 ∈ wcel 1393 {cab 2026 ⊆ wss 2917 ∅c0 3224 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-v 2559 df-dif 2920 df-in 2924 df-ss 2931 df-nul 3225 |
This theorem is referenced by: csbprc 3262 mpt20 5574 |
Copyright terms: Public domain | W3C validator |