![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > abeq0 | GIF version |
Description: Condition for a class abstraction to be empty. (Contributed by Jim Kingdon, 12-Aug-2018.) |
Ref | Expression |
---|---|
abeq0 | ⊢ ({𝑥 ∣ 𝜑} = ∅ ↔ ∀𝑥 ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbn 1826 | . . 3 ⊢ ([𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑦 / 𝑥]𝜑) | |
2 | 1 | albii 1359 | . 2 ⊢ (∀𝑦[𝑦 / 𝑥] ¬ 𝜑 ↔ ∀𝑦 ¬ [𝑦 / 𝑥]𝜑) |
3 | nfv 1421 | . . 3 ⊢ Ⅎ𝑦 ¬ 𝜑 | |
4 | 3 | sb8 1736 | . 2 ⊢ (∀𝑥 ¬ 𝜑 ↔ ∀𝑦[𝑦 / 𝑥] ¬ 𝜑) |
5 | eq0 3239 | . . 3 ⊢ ({𝑥 ∣ 𝜑} = ∅ ↔ ∀𝑦 ¬ 𝑦 ∈ {𝑥 ∣ 𝜑}) | |
6 | df-clab 2027 | . . . . 5 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ [𝑦 / 𝑥]𝜑) | |
7 | 6 | notbii 594 | . . . 4 ⊢ (¬ 𝑦 ∈ {𝑥 ∣ 𝜑} ↔ ¬ [𝑦 / 𝑥]𝜑) |
8 | 7 | albii 1359 | . . 3 ⊢ (∀𝑦 ¬ 𝑦 ∈ {𝑥 ∣ 𝜑} ↔ ∀𝑦 ¬ [𝑦 / 𝑥]𝜑) |
9 | 5, 8 | bitri 173 | . 2 ⊢ ({𝑥 ∣ 𝜑} = ∅ ↔ ∀𝑦 ¬ [𝑦 / 𝑥]𝜑) |
10 | 2, 4, 9 | 3bitr4ri 202 | 1 ⊢ ({𝑥 ∣ 𝜑} = ∅ ↔ ∀𝑥 ¬ 𝜑) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ↔ wb 98 ∀wal 1241 = wceq 1243 ∈ wcel 1393 [wsb 1645 {cab 2026 ∅c0 3224 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-fal 1249 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-v 2559 df-dif 2920 df-nul 3225 |
This theorem is referenced by: opprc 3570 |
Copyright terms: Public domain | W3C validator |