ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  a17d GIF version

Theorem a17d 1420
Description: ax-17 1419 with antecedent. (Contributed by NM, 1-Mar-2013.)
Assertion
Ref Expression
a17d (𝜑 → (𝜓 → ∀𝑥𝜓))
Distinct variable group:   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem a17d
StepHypRef Expression
1 ax-17 1419 . 2 (𝜓 → ∀𝑥𝜓)
21a1i 9 1 (𝜑 → (𝜓 → ∀𝑥𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1241
This theorem was proved from axioms:  ax-1 5  ax-mp 7  ax-17 1419
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator