ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  7nn0 GIF version

Theorem 7nn0 8203
Description: 7 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.)
Assertion
Ref Expression
7nn0 7 ∈ ℕ0

Proof of Theorem 7nn0
StepHypRef Expression
1 7nn 8082 . 2 7 ∈ ℕ
21nnnn0i 8189 1 7 ∈ ℕ0
Colors of variables: wff set class
Syntax hints:  wcel 1393  7c7 7969  0cn0 8181
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-cnex 6975  ax-resscn 6976  ax-1re 6978  ax-addrcl 6981
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-br 3765  df-iota 4867  df-fv 4910  df-ov 5515  df-inn 7915  df-2 7973  df-3 7974  df-4 7975  df-5 7976  df-6 7977  df-7 7978  df-n0 8182
This theorem is referenced by:  7p4e11  8419  7p5e12  8420  7p6e13  8421  7p7e14  8422  8p8e16  8428  9p8e17  8435  9p9e18  8436  7t3e21  8450  7t4e28  8451  7t5e35  8452  7t6e42  8453  7t7e49  8454  8t8e64  8461  9t3e27  8463  9t4e36  8464  9t8e72  8468  9t9e81  8469
  Copyright terms: Public domain W3C validator