![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 5p2e7 | GIF version |
Description: 5 + 2 = 7. (Contributed by NM, 11-May-2004.) |
Ref | Expression |
---|---|
5p2e7 | ⊢ (5 + 2) = 7 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2 7973 | . . . . 5 ⊢ 2 = (1 + 1) | |
2 | 1 | oveq2i 5523 | . . . 4 ⊢ (5 + 2) = (5 + (1 + 1)) |
3 | 5cn 7995 | . . . . 5 ⊢ 5 ∈ ℂ | |
4 | ax-1cn 6977 | . . . . 5 ⊢ 1 ∈ ℂ | |
5 | 3, 4, 4 | addassi 7035 | . . . 4 ⊢ ((5 + 1) + 1) = (5 + (1 + 1)) |
6 | 2, 5 | eqtr4i 2063 | . . 3 ⊢ (5 + 2) = ((5 + 1) + 1) |
7 | df-6 7977 | . . . 4 ⊢ 6 = (5 + 1) | |
8 | 7 | oveq1i 5522 | . . 3 ⊢ (6 + 1) = ((5 + 1) + 1) |
9 | 6, 8 | eqtr4i 2063 | . 2 ⊢ (5 + 2) = (6 + 1) |
10 | df-7 7978 | . 2 ⊢ 7 = (6 + 1) | |
11 | 9, 10 | eqtr4i 2063 | 1 ⊢ (5 + 2) = 7 |
Colors of variables: wff set class |
Syntax hints: = wceq 1243 (class class class)co 5512 1c1 6890 + caddc 6892 2c2 7964 5c5 7967 6c6 7968 7c7 7969 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-resscn 6976 ax-1cn 6977 ax-1re 6978 ax-addrcl 6981 ax-addass 6986 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-rex 2312 df-v 2559 df-un 2922 df-in 2924 df-ss 2931 df-sn 3381 df-pr 3382 df-op 3384 df-uni 3581 df-br 3765 df-iota 4867 df-fv 4910 df-ov 5515 df-2 7973 df-3 7974 df-4 7975 df-5 7976 df-6 7977 df-7 7978 |
This theorem is referenced by: 5p3e8 8058 |
Copyright terms: Public domain | W3C validator |