![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 4t3lem | GIF version |
Description: Lemma for 4t3e12 8439 and related theorems. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
4t3lem.1 | ⊢ 𝐴 ∈ ℕ0 |
4t3lem.2 | ⊢ 𝐵 ∈ ℕ0 |
4t3lem.3 | ⊢ 𝐶 = (𝐵 + 1) |
4t3lem.4 | ⊢ (𝐴 · 𝐵) = 𝐷 |
4t3lem.5 | ⊢ (𝐷 + 𝐴) = 𝐸 |
Ref | Expression |
---|---|
4t3lem | ⊢ (𝐴 · 𝐶) = 𝐸 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4t3lem.3 | . . 3 ⊢ 𝐶 = (𝐵 + 1) | |
2 | 1 | oveq2i 5523 | . 2 ⊢ (𝐴 · 𝐶) = (𝐴 · (𝐵 + 1)) |
3 | 4t3lem.1 | . . . . . 6 ⊢ 𝐴 ∈ ℕ0 | |
4 | 3 | nn0cni 8193 | . . . . 5 ⊢ 𝐴 ∈ ℂ |
5 | 4t3lem.2 | . . . . . 6 ⊢ 𝐵 ∈ ℕ0 | |
6 | 5 | nn0cni 8193 | . . . . 5 ⊢ 𝐵 ∈ ℂ |
7 | ax-1cn 6977 | . . . . 5 ⊢ 1 ∈ ℂ | |
8 | 4, 6, 7 | adddii 7037 | . . . 4 ⊢ (𝐴 · (𝐵 + 1)) = ((𝐴 · 𝐵) + (𝐴 · 1)) |
9 | 4t3lem.4 | . . . . 5 ⊢ (𝐴 · 𝐵) = 𝐷 | |
10 | 4 | mulid1i 7029 | . . . . 5 ⊢ (𝐴 · 1) = 𝐴 |
11 | 9, 10 | oveq12i 5524 | . . . 4 ⊢ ((𝐴 · 𝐵) + (𝐴 · 1)) = (𝐷 + 𝐴) |
12 | 8, 11 | eqtri 2060 | . . 3 ⊢ (𝐴 · (𝐵 + 1)) = (𝐷 + 𝐴) |
13 | 4t3lem.5 | . . 3 ⊢ (𝐷 + 𝐴) = 𝐸 | |
14 | 12, 13 | eqtri 2060 | . 2 ⊢ (𝐴 · (𝐵 + 1)) = 𝐸 |
15 | 2, 14 | eqtri 2060 | 1 ⊢ (𝐴 · 𝐶) = 𝐸 |
Colors of variables: wff set class |
Syntax hints: = wceq 1243 ∈ wcel 1393 (class class class)co 5512 1c1 6890 + caddc 6892 · cmul 6894 ℕ0cn0 8181 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-cnex 6975 ax-resscn 6976 ax-1cn 6977 ax-1re 6978 ax-icn 6979 ax-addcl 6980 ax-addrcl 6981 ax-mulcl 6982 ax-mulcom 6985 ax-mulass 6987 ax-distr 6988 ax-1rid 6991 ax-rnegex 6993 ax-cnre 6995 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-rex 2312 df-v 2559 df-un 2922 df-in 2924 df-ss 2931 df-sn 3381 df-pr 3382 df-op 3384 df-uni 3581 df-int 3616 df-br 3765 df-iota 4867 df-fv 4910 df-ov 5515 df-inn 7915 df-n0 8182 |
This theorem is referenced by: 4t3e12 8439 4t4e16 8440 5t3e15 8441 5t4e20 8442 5t5e25 8443 6t3e18 8445 6t4e24 8446 6t5e30 8447 6t6e36 8448 7t3e21 8450 7t4e28 8451 7t5e35 8452 7t6e42 8453 7t7e49 8454 8t3e24 8456 8t4e32 8457 8t5e40 8458 8t6e48 8459 8t7e56 8460 8t8e64 8461 9t3e27 8463 9t4e36 8464 9t5e45 8465 9t6e54 8466 9t7e63 8467 9t8e72 8468 9t9e81 8469 |
Copyright terms: Public domain | W3C validator |