Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3t1e3 | GIF version |
Description: 3 times 1 equals 3. (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
3t1e3 | ⊢ (3 · 1) = 3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3cn 7990 | . 2 ⊢ 3 ∈ ℂ | |
2 | 1 | mulid1i 7029 | 1 ⊢ (3 · 1) = 3 |
Colors of variables: wff set class |
Syntax hints: = wceq 1243 (class class class)co 5512 1c1 6890 · cmul 6894 3c3 7965 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-resscn 6976 ax-1cn 6977 ax-1re 6978 ax-icn 6979 ax-addcl 6980 ax-addrcl 6981 ax-mulcl 6982 ax-mulcom 6985 ax-mulass 6987 ax-distr 6988 ax-1rid 6991 ax-cnre 6995 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-rex 2312 df-v 2559 df-un 2922 df-in 2924 df-ss 2931 df-sn 3381 df-pr 3382 df-op 3384 df-uni 3581 df-br 3765 df-iota 4867 df-fv 4910 df-ov 5515 df-2 7973 df-3 7974 |
This theorem is referenced by: 3t3e9 8072 |
Copyright terms: Public domain | W3C validator |