Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3p1e4 | GIF version |
Description: 3 + 1 = 4. (Contributed by Mario Carneiro, 18-Apr-2015.) |
Ref | Expression |
---|---|
3p1e4 | ⊢ (3 + 1) = 4 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-4 7975 | . 2 ⊢ 4 = (3 + 1) | |
2 | 1 | eqcomi 2044 | 1 ⊢ (3 + 1) = 4 |
Colors of variables: wff set class |
Syntax hints: = wceq 1243 (class class class)co 5512 1c1 6890 + caddc 6892 3c3 7965 4c4 7966 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1336 ax-gen 1338 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-cleq 2033 df-4 7975 |
This theorem is referenced by: 7t6e42 8453 8t5e40 8458 9t5e45 8465 |
Copyright terms: Public domain | W3C validator |