ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3netr4g GIF version

Theorem 3netr4g 2240
Description: Substitution of equality into both sides of an inequality. (Contributed by NM, 14-Jun-2012.)
Hypotheses
Ref Expression
3netr4g.1 (𝜑𝐴𝐵)
3netr4g.2 𝐶 = 𝐴
3netr4g.3 𝐷 = 𝐵
Assertion
Ref Expression
3netr4g (𝜑𝐶𝐷)

Proof of Theorem 3netr4g
StepHypRef Expression
1 3netr4g.1 . 2 (𝜑𝐴𝐵)
2 3netr4g.2 . . 3 𝐶 = 𝐴
3 3netr4g.3 . . 3 𝐷 = 𝐵
42, 3neeq12i 2222 . 2 (𝐶𝐷𝐴𝐵)
51, 4sylibr 137 1 (𝜑𝐶𝐷)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1243  wne 2204
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-5 1336  ax-gen 1338  ax-4 1400  ax-17 1419  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-cleq 2033  df-ne 2206
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator