Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3netr4g | GIF version |
Description: Substitution of equality into both sides of an inequality. (Contributed by NM, 14-Jun-2012.) |
Ref | Expression |
---|---|
3netr4g.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
3netr4g.2 | ⊢ 𝐶 = 𝐴 |
3netr4g.3 | ⊢ 𝐷 = 𝐵 |
Ref | Expression |
---|---|
3netr4g | ⊢ (𝜑 → 𝐶 ≠ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3netr4g.1 | . 2 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
2 | 3netr4g.2 | . . 3 ⊢ 𝐶 = 𝐴 | |
3 | 3netr4g.3 | . . 3 ⊢ 𝐷 = 𝐵 | |
4 | 2, 3 | neeq12i 2222 | . 2 ⊢ (𝐶 ≠ 𝐷 ↔ 𝐴 ≠ 𝐵) |
5 | 1, 4 | sylibr 137 | 1 ⊢ (𝜑 → 𝐶 ≠ 𝐷) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1243 ≠ wne 2204 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-5 1336 ax-gen 1338 ax-4 1400 ax-17 1419 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-cleq 2033 df-ne 2206 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |