ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3mix1d GIF version

Theorem 3mix1d 1079
Description: Deduction introducing triple disjunction. (Contributed by Scott Fenton, 8-Jun-2011.)
Hypothesis
Ref Expression
3mixd.1 (𝜑𝜓)
Assertion
Ref Expression
3mix1d (𝜑 → (𝜓𝜒𝜃))

Proof of Theorem 3mix1d
StepHypRef Expression
1 3mixd.1 . 2 (𝜑𝜓)
2 3mix1 1073 . 2 (𝜓 → (𝜓𝜒𝜃))
31, 2syl 14 1 (𝜑 → (𝜓𝜒𝜃))
Colors of variables: wff set class
Syntax hints:  wi 4  w3o 884
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630
This theorem depends on definitions:  df-bi 110  df-3or 886
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator