Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  3jaoian GIF version

Theorem 3jaoian 1200
 Description: Disjunction of 3 antecedents (inference). (Contributed by NM, 14-Oct-2005.)
Hypotheses
Ref Expression
3jaoian.1 ((𝜑𝜓) → 𝜒)
3jaoian.2 ((𝜃𝜓) → 𝜒)
3jaoian.3 ((𝜏𝜓) → 𝜒)
Assertion
Ref Expression
3jaoian (((𝜑𝜃𝜏) ∧ 𝜓) → 𝜒)

Proof of Theorem 3jaoian
StepHypRef Expression
1 3jaoian.1 . . . 4 ((𝜑𝜓) → 𝜒)
21ex 108 . . 3 (𝜑 → (𝜓𝜒))
3 3jaoian.2 . . . 4 ((𝜃𝜓) → 𝜒)
43ex 108 . . 3 (𝜃 → (𝜓𝜒))
5 3jaoian.3 . . . 4 ((𝜏𝜓) → 𝜒)
65ex 108 . . 3 (𝜏 → (𝜓𝜒))
72, 4, 63jaoi 1198 . 2 ((𝜑𝜃𝜏) → (𝜓𝜒))
87imp 115 1 (((𝜑𝜃𝜏) ∧ 𝜓) → 𝜒)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 97   ∨ w3o 884 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630 This theorem depends on definitions:  df-bi 110  df-3or 886  df-3an 887 This theorem is referenced by:  xrltnsym  8714  xrlttr  8716  xltnegi  8748
 Copyright terms: Public domain W3C validator