ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3exp2 GIF version

Theorem 3exp2 1121
Description: Exportation from right triple conjunction. (Contributed by NM, 26-Oct-2006.)
Hypothesis
Ref Expression
3exp2.1 ((φ (ψ χ θ)) → τ)
Assertion
Ref Expression
3exp2 (φ → (ψ → (χ → (θτ))))

Proof of Theorem 3exp2
StepHypRef Expression
1 3exp2.1 . . 3 ((φ (ψ χ θ)) → τ)
21ex 108 . 2 (φ → ((ψ χ θ) → τ))
323expd 1120 1 (φ → (ψ → (χ → (θτ))))
Colors of variables: wff set class
Syntax hints:  wi 4   wa 97   w3a 884
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101
This theorem depends on definitions:  df-bi 110  df-3an 886
This theorem is referenced by:  3anassrs  1125  po2nr  4037  fliftfund  5380  tfrlemibxssdm  5882
  Copyright terms: Public domain W3C validator