![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2nn | GIF version |
Description: 2 is a positive integer. (Contributed by NM, 20-Aug-2001.) |
Ref | Expression |
---|---|
2nn | ⊢ 2 ∈ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2 7973 | . 2 ⊢ 2 = (1 + 1) | |
2 | 1nn 7925 | . . 3 ⊢ 1 ∈ ℕ | |
3 | peano2nn 7926 | . . 3 ⊢ (1 ∈ ℕ → (1 + 1) ∈ ℕ) | |
4 | 2, 3 | ax-mp 7 | . 2 ⊢ (1 + 1) ∈ ℕ |
5 | 1, 4 | eqeltri 2110 | 1 ⊢ 2 ∈ ℕ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 1393 (class class class)co 5512 1c1 6890 + caddc 6892 ℕcn 7914 2c2 7964 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-cnex 6975 ax-resscn 6976 ax-1re 6978 ax-addrcl 6981 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-rex 2312 df-v 2559 df-un 2922 df-in 2924 df-ss 2931 df-sn 3381 df-pr 3382 df-op 3384 df-uni 3581 df-int 3616 df-br 3765 df-iota 4867 df-fv 4910 df-ov 5515 df-inn 7915 df-2 7973 |
This theorem is referenced by: 3nn 8078 2nn0 8198 2z 8273 uz3m2nn 8515 ige2m1fz1 8971 qbtwnre 9111 flhalf 9144 sqeq0 9317 sqeq0d 9380 resqrexlemnm 9616 abs00ap 9660 ex-fl 9895 ex-ceil 9896 |
Copyright terms: Public domain | W3C validator |