Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2euswapdc | GIF version |
Description: A condition allowing swap of uniqueness and existential quantifiers. (Contributed by Jim Kingdon, 7-Jul-2018.) |
Ref | Expression |
---|---|
2euswapdc | ⊢ (DECID ∃𝑥∃𝑦𝜑 → (∀𝑥∃*𝑦𝜑 → (∃!𝑥∃𝑦𝜑 → ∃!𝑦∃𝑥𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | excomim 1553 | . . . . 5 ⊢ (∃𝑥∃𝑦𝜑 → ∃𝑦∃𝑥𝜑) | |
2 | 1 | a1i 9 | . . . 4 ⊢ ((DECID ∃𝑥∃𝑦𝜑 ∧ ∀𝑥∃*𝑦𝜑) → (∃𝑥∃𝑦𝜑 → ∃𝑦∃𝑥𝜑)) |
3 | 2moswapdc 1990 | . . . . 5 ⊢ (DECID ∃𝑥∃𝑦𝜑 → (∀𝑥∃*𝑦𝜑 → (∃*𝑥∃𝑦𝜑 → ∃*𝑦∃𝑥𝜑))) | |
4 | 3 | imp 115 | . . . 4 ⊢ ((DECID ∃𝑥∃𝑦𝜑 ∧ ∀𝑥∃*𝑦𝜑) → (∃*𝑥∃𝑦𝜑 → ∃*𝑦∃𝑥𝜑)) |
5 | 2, 4 | anim12d 318 | . . 3 ⊢ ((DECID ∃𝑥∃𝑦𝜑 ∧ ∀𝑥∃*𝑦𝜑) → ((∃𝑥∃𝑦𝜑 ∧ ∃*𝑥∃𝑦𝜑) → (∃𝑦∃𝑥𝜑 ∧ ∃*𝑦∃𝑥𝜑))) |
6 | eu5 1947 | . . 3 ⊢ (∃!𝑥∃𝑦𝜑 ↔ (∃𝑥∃𝑦𝜑 ∧ ∃*𝑥∃𝑦𝜑)) | |
7 | eu5 1947 | . . 3 ⊢ (∃!𝑦∃𝑥𝜑 ↔ (∃𝑦∃𝑥𝜑 ∧ ∃*𝑦∃𝑥𝜑)) | |
8 | 5, 6, 7 | 3imtr4g 194 | . 2 ⊢ ((DECID ∃𝑥∃𝑦𝜑 ∧ ∀𝑥∃*𝑦𝜑) → (∃!𝑥∃𝑦𝜑 → ∃!𝑦∃𝑥𝜑)) |
9 | 8 | ex 108 | 1 ⊢ (DECID ∃𝑥∃𝑦𝜑 → (∀𝑥∃*𝑦𝜑 → (∃!𝑥∃𝑦𝜑 → ∃!𝑦∃𝑥𝜑))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 97 DECID wdc 742 ∀wal 1241 ∃wex 1381 ∃!weu 1900 ∃*wmo 1901 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 |
This theorem depends on definitions: df-bi 110 df-dc 743 df-tru 1246 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 |
This theorem is referenced by: euxfr2dc 2726 2reuswapdc 2743 |
Copyright terms: Public domain | W3C validator |