ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2alimdv Structured version   GIF version

Theorem 2alimdv 1758
Description: Deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 27-Apr-2004.)
Hypothesis
Ref Expression
2alimdv.1 (φ → (ψχ))
Assertion
Ref Expression
2alimdv (φ → (xyψxyχ))
Distinct variable groups:   φ,x   φ,y
Allowed substitution hints:   ψ(x,y)   χ(x,y)

Proof of Theorem 2alimdv
StepHypRef Expression
1 2alimdv.1 . . 3 (φ → (ψχ))
21alimdv 1756 . 2 (φ → (yψyχ))
32alimdv 1756 1 (φ → (xyψxyχ))
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1240
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-5 1333  ax-gen 1335  ax-17 1416
This theorem is referenced by:  moimv  1963  soss  4042
  Copyright terms: Public domain W3C validator