![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2albii | GIF version |
Description: Inference adding 2 universal quantifiers to both sides of an equivalence. (Contributed by NM, 9-Mar-1997.) |
Ref | Expression |
---|---|
albii.1 | ⊢ (φ ↔ ψ) |
Ref | Expression |
---|---|
2albii | ⊢ (∀x∀yφ ↔ ∀x∀yψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | albii.1 | . . 3 ⊢ (φ ↔ ψ) | |
2 | 1 | albii 1356 | . 2 ⊢ (∀yφ ↔ ∀yψ) |
3 | 2 | albii 1356 | 1 ⊢ (∀x∀yφ ↔ ∀x∀yψ) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 98 ∀wal 1240 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1333 ax-gen 1335 |
This theorem depends on definitions: df-bi 110 |
This theorem is referenced by: mor 1939 mo4f 1957 moanim 1971 2eu4 1990 ralcomf 2465 raliunxp 4420 cnvsym 4651 intasym 4652 intirr 4654 codir 4656 qfto 4657 dffun4 4856 dffun4f 4861 funcnveq 4905 fun11 4909 fununi 4910 mpt22eqb 5552 addnq0mo 6430 mulnq0mo 6431 addsrmo 6671 mulsrmo 6672 |
Copyright terms: Public domain | W3C validator |