Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  1p2e3 GIF version

Theorem 1p2e3 8044
 Description: 1 + 2 = 3 (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
1p2e3 (1 + 2) = 3

Proof of Theorem 1p2e3
StepHypRef Expression
1 2cn 7986 . 2 2 ∈ ℂ
2 ax-1cn 6977 . 2 1 ∈ ℂ
3 2p1e3 8043 . 2 (2 + 1) = 3
41, 2, 3addcomli 7158 1 (1 + 2) = 3
 Colors of variables: wff set class Syntax hints:   = wceq 1243  (class class class)co 5512  1c1 6890   + caddc 6892  2c2 7964  3c3 7965 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-11 1397  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-resscn 6976  ax-1cn 6977  ax-1re 6978  ax-addrcl 6981  ax-addcom 6984 This theorem depends on definitions:  df-bi 110  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-in 2924  df-ss 2931  df-2 7973  df-3 7974 This theorem is referenced by:  binom3  9366
 Copyright terms: Public domain W3C validator