![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1p1e2 | GIF version |
Description: 1 + 1 = 2. (Contributed by NM, 1-Apr-2008.) |
Ref | Expression |
---|---|
1p1e2 | ⊢ (1 + 1) = 2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2 7973 | . 2 ⊢ 2 = (1 + 1) | |
2 | 1 | eqcomi 2044 | 1 ⊢ (1 + 1) = 2 |
Colors of variables: wff set class |
Syntax hints: = wceq 1243 (class class class)co 5512 1c1 6890 + caddc 6892 2c2 7964 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1336 ax-gen 1338 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-cleq 2033 df-2 7973 |
This theorem is referenced by: 2m1e1 8034 add1p1 8174 sub1m1 8175 nn0n0n1ge2 8311 10p10e20 8437 5t4e20 8442 6t4e24 8446 7t3e21 8450 8t3e24 8456 9t3e27 8463 fldiv4p1lem1div2 9147 |
Copyright terms: Public domain | W3C validator |