Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 1e0p1 | GIF version |
Description: The successor of zero. (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
1e0p1 | ⊢ 1 = (0 + 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0p1e1 8031 | . 2 ⊢ (0 + 1) = 1 | |
2 | 1 | eqcomi 2044 | 1 ⊢ 1 = (0 + 1) |
Colors of variables: wff set class |
Syntax hints: = wceq 1243 (class class class)co 5512 0cc0 6889 1c1 6890 + caddc 6892 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1336 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-4 1400 ax-17 1419 ax-ial 1427 ax-ext 2022 ax-1cn 6977 ax-icn 6979 ax-addcl 6980 ax-mulcl 6982 ax-addcom 6984 ax-i2m1 6989 ax-0id 6992 |
This theorem depends on definitions: df-bi 110 df-cleq 2033 df-clel 2036 |
This theorem is referenced by: 6p5e11 8417 7p4e11 8419 8p3e11 8423 9p2e11 8429 fzo01 9072 |
Copyright terms: Public domain | W3C validator |