Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  1e0p1 GIF version

Theorem 1e0p1 8395
 Description: The successor of zero. (Contributed by Mario Carneiro, 18-Feb-2014.)
Assertion
Ref Expression
1e0p1 1 = (0 + 1)

Proof of Theorem 1e0p1
StepHypRef Expression
1 0p1e1 8031 . 2 (0 + 1) = 1
21eqcomi 2044 1 1 = (0 + 1)
 Colors of variables: wff set class Syntax hints:   = wceq 1243  (class class class)co 5512  0cc0 6889  1c1 6890   + caddc 6892 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1336  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-4 1400  ax-17 1419  ax-ial 1427  ax-ext 2022  ax-1cn 6977  ax-icn 6979  ax-addcl 6980  ax-mulcl 6982  ax-addcom 6984  ax-i2m1 6989  ax-0id 6992 This theorem depends on definitions:  df-bi 110  df-cleq 2033  df-clel 2036 This theorem is referenced by:  6p5e11  8417  7p4e11  8419  8p3e11  8423  9p2e11  8429  fzo01  9072
 Copyright terms: Public domain W3C validator