ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.9v Structured version   GIF version

Theorem 19.9v 1748
Description: Special case of Theorem 19.9 of [Margaris] p. 89. (Contributed by NM, 28-May-1995.) (Revised by NM, 21-May-2007.)
Assertion
Ref Expression
19.9v (xφφ)
Distinct variable group:   φ,x

Proof of Theorem 19.9v
StepHypRef Expression
1 ax-17 1416 . 2 (φxφ)
2119.9h 1531 1 (xφφ)
Colors of variables: wff set class
Syntax hints:  wb 98  wex 1378
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-4 1397  ax-17 1416
This theorem depends on definitions:  df-bi 110
This theorem is referenced by:  spc2gv  2637  spc3gv  2639  mo2icl  2714  brtpos2  5807
  Copyright terms: Public domain W3C validator