ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.9ht GIF version

Theorem 19.9ht 1529
Description: A closed version of one direction of 19.9 1532. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
19.9ht (x(φxφ) → (xφφ))

Proof of Theorem 19.9ht
StepHypRef Expression
1 id 19 . . 3 (φφ)
21ax-gen 1335 . 2 x(φφ)
3 19.23ht 1383 . 2 (x(φxφ) → (x(φφ) ↔ (xφφ)))
42, 3mpbii 136 1 (x(φxφ) → (xφφ))
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1240  wex 1378
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-gen 1335  ax-ie2 1380
This theorem depends on definitions:  df-bi 110
This theorem is referenced by:  19.9t  1530  19.9h  1531  19.9hd  1549
  Copyright terms: Public domain W3C validator