![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 19.42vvv | GIF version |
Description: Theorem 19.42 of [Margaris] p. 90 with 3 quantifiers. (Contributed by NM, 21-Sep-2011.) |
Ref | Expression |
---|---|
19.42vvv | ⊢ (∃x∃y∃z(φ ∧ ψ) ↔ (φ ∧ ∃x∃y∃zψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.42vv 1785 | . . 3 ⊢ (∃y∃z(φ ∧ ψ) ↔ (φ ∧ ∃y∃zψ)) | |
2 | 1 | exbii 1493 | . 2 ⊢ (∃x∃y∃z(φ ∧ ψ) ↔ ∃x(φ ∧ ∃y∃zψ)) |
3 | 19.42v 1783 | . 2 ⊢ (∃x(φ ∧ ∃y∃zψ) ↔ (φ ∧ ∃x∃y∃zψ)) | |
4 | 2, 3 | bitri 173 | 1 ⊢ (∃x∃y∃z(φ ∧ ψ) ↔ (φ ∧ ∃x∃y∃zψ)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 97 ↔ wb 98 ∃wex 1378 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1333 ax-gen 1335 ax-ie1 1379 ax-ie2 1380 ax-4 1397 ax-17 1416 ax-ial 1424 |
This theorem depends on definitions: df-bi 110 |
This theorem is referenced by: ceqsex6v 2592 |
Copyright terms: Public domain | W3C validator |