![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 19.42 | GIF version |
Description: Theorem 19.42 of [Margaris] p. 90. (Contributed by NM, 18-Aug-1993.) |
Ref | Expression |
---|---|
19.42.1 | ⊢ Ⅎxφ |
Ref | Expression |
---|---|
19.42 | ⊢ (∃x(φ ∧ ψ) ↔ (φ ∧ ∃xψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.42.1 | . . 3 ⊢ Ⅎxφ | |
2 | 1 | 19.41 1573 | . 2 ⊢ (∃x(ψ ∧ φ) ↔ (∃xψ ∧ φ)) |
3 | exancom 1496 | . 2 ⊢ (∃x(φ ∧ ψ) ↔ ∃x(ψ ∧ φ)) | |
4 | ancom 253 | . 2 ⊢ ((φ ∧ ∃xψ) ↔ (∃xψ ∧ φ)) | |
5 | 2, 3, 4 | 3bitr4i 201 | 1 ⊢ (∃x(φ ∧ ψ) ↔ (φ ∧ ∃xψ)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 97 ↔ wb 98 Ⅎwnf 1346 ∃wex 1378 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1333 ax-gen 1335 ax-ie1 1379 ax-ie2 1380 ax-4 1397 ax-ial 1424 |
This theorem depends on definitions: df-bi 110 df-nf 1347 |
This theorem is referenced by: eean 1803 r2exf 2336 |
Copyright terms: Public domain | W3C validator |