![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 19.41vvvv | GIF version |
Description: Theorem 19.41 of [Margaris] p. 90 with 4 quantifiers. (Contributed by FL, 14-Jul-2007.) |
Ref | Expression |
---|---|
19.41vvvv | ⊢ (∃w∃x∃y∃z(φ ∧ ψ) ↔ (∃w∃x∃y∃zφ ∧ ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.41vvv 1781 | . . 3 ⊢ (∃x∃y∃z(φ ∧ ψ) ↔ (∃x∃y∃zφ ∧ ψ)) | |
2 | 1 | exbii 1493 | . 2 ⊢ (∃w∃x∃y∃z(φ ∧ ψ) ↔ ∃w(∃x∃y∃zφ ∧ ψ)) |
3 | 19.41v 1779 | . 2 ⊢ (∃w(∃x∃y∃zφ ∧ ψ) ↔ (∃w∃x∃y∃zφ ∧ ψ)) | |
4 | 2, 3 | bitri 173 | 1 ⊢ (∃w∃x∃y∃z(φ ∧ ψ) ↔ (∃w∃x∃y∃zφ ∧ ψ)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 97 ↔ wb 98 ∃wex 1378 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1333 ax-gen 1335 ax-ie1 1379 ax-ie2 1380 ax-4 1397 ax-17 1416 ax-ial 1424 |
This theorem depends on definitions: df-bi 110 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |