ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.36i Structured version   GIF version

Theorem 19.36i 1559
Description: Inference from Theorem 19.36 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 2-Feb-2015.)
Hypotheses
Ref Expression
19.36i.1 xψ
19.36i.2 x(φψ)
Assertion
Ref Expression
19.36i (xφψ)

Proof of Theorem 19.36i
StepHypRef Expression
1 19.36i.2 . . 3 x(φψ)
2119.35i 1513 . 2 (xφxψ)
3 19.36i.1 . . 3 xψ
4 id 19 . . 3 (ψψ)
53, 4exlimi 1482 . 2 (xψψ)
62, 5syl 14 1 (xφψ)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1240  wnf 1346  wex 1378
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1333  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-4 1397  ax-ial 1424
This theorem depends on definitions:  df-bi 110  df-nf 1347
This theorem is referenced by:  19.36aiv  1778  vtoclf  2601
  Copyright terms: Public domain W3C validator