ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.36-1 Structured version   GIF version

Theorem 19.36-1 1546
Description: Closed form of 19.36i 1545. One direction of Theorem 19.36 of [Margaris] p. 90. The converse holds in classical logic, but does not hold (for all propositions) in intuitionistic logic. (Contributed by Jim Kingdon, 20-Jun-2018.)
Hypothesis
Ref Expression
19.36-1.1 xψ
Assertion
Ref Expression
19.36-1 (x(φψ) → (xφψ))

Proof of Theorem 19.36-1
StepHypRef Expression
1 19.35-1 1499 . 2 (x(φψ) → (xφxψ))
2 19.36-1.1 . . 3 xψ
3219.9 1519 . 2 (xψψ)
41, 3syl6ib 150 1 (x(φψ) → (xφψ))
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1226  wnf 1329  wex 1363
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1316  ax-gen 1318  ax-ie1 1364  ax-ie2 1365  ax-4 1382  ax-ial 1410
This theorem depends on definitions:  df-bi 110  df-nf 1330
This theorem is referenced by:  vtocl2  2585  vtocl3  2586  spcimgft  2605
  Copyright terms: Public domain W3C validator