ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.35i Structured version   GIF version

Theorem 19.35i 1498
Description: Inference from Theorem 19.35 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 2-Feb-2015.)
Hypothesis
Ref Expression
19.35i.1 x(φψ)
Assertion
Ref Expression
19.35i (xφxψ)

Proof of Theorem 19.35i
StepHypRef Expression
1 19.35i.1 . 2 x(φψ)
2 19.35-1 1497 . 2 (x(φψ) → (xφxψ))
31, 2ax-mp 7 1 (xφxψ)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1226  wex 1362
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1316  ax-gen 1318  ax-ie1 1363  ax-ie2 1364  ax-4 1381  ax-ial 1409
This theorem depends on definitions:  df-bi 110
This theorem is referenced by:  19.36i  1544  spimed  1610
  Copyright terms: Public domain W3C validator