ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.27v GIF version

Theorem 19.27v 1776
Description: Theorem 19.27 of [Margaris] p. 90. (Contributed by NM, 3-Jun-2004.)
Assertion
Ref Expression
19.27v (x(φ ψ) ↔ (xφ ψ))
Distinct variable group:   ψ,x
Allowed substitution hint:   φ(x)

Proof of Theorem 19.27v
StepHypRef Expression
1 ax-17 1416 . 2 (ψxψ)
2119.27h 1449 1 (x(φ ψ) ↔ (xφ ψ))
Colors of variables: wff set class
Syntax hints:   wa 97  wb 98  wal 1240
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1333  ax-gen 1335  ax-4 1397  ax-17 1416
This theorem depends on definitions:  df-bi 110
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator