ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.19 Structured version   GIF version

Theorem 19.19 1538
Description: Theorem 19.19 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.)
Hypothesis
Ref Expression
19.19.1 xφ
Assertion
Ref Expression
19.19 (x(φψ) → (φxψ))

Proof of Theorem 19.19
StepHypRef Expression
1 19.19.1 . . 3 xφ
2119.9 1517 . 2 (xφφ)
3 exbi 1477 . 2 (x(φψ) → (xφxψ))
42, 3syl5bbr 183 1 (x(φψ) → (φxψ))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 98  wal 1226  wnf 1329  wex 1362
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1316  ax-gen 1318  ax-ie1 1363  ax-ie2 1364  ax-4 1381  ax-ial 1409
This theorem depends on definitions:  df-bi 110  df-nf 1330
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator