Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 0inp0 | GIF version |
Description: Something cannot be equal to both the null set and the power set of the null set. (Contributed by NM, 30-Sep-2003.) |
Ref | Expression |
---|---|
0inp0 | ⊢ (𝐴 = ∅ → ¬ 𝐴 = {∅}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nep0 3918 | . . 3 ⊢ ∅ ≠ {∅} | |
2 | neeq1 2218 | . . 3 ⊢ (𝐴 = ∅ → (𝐴 ≠ {∅} ↔ ∅ ≠ {∅})) | |
3 | 1, 2 | mpbiri 157 | . 2 ⊢ (𝐴 = ∅ → 𝐴 ≠ {∅}) |
4 | 3 | neneqd 2226 | 1 ⊢ (𝐴 = ∅ → ¬ 𝐴 = {∅}) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1243 ≠ wne 2204 ∅c0 3224 {csn 3375 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-nul 3883 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ne 2206 df-v 2559 df-dif 2920 df-nul 3225 df-sn 3381 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |