![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0er | GIF version |
Description: The empty set is an equivalence relation on the empty set. (Contributed by Mario Carneiro, 5-Sep-2015.) |
Ref | Expression |
---|---|
0er | ⊢ ∅ Er ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rel0 4462 | . . . 4 ⊢ Rel ∅ | |
2 | 1 | a1i 9 | . . 3 ⊢ (⊤ → Rel ∅) |
3 | df-br 3765 | . . . . 5 ⊢ (𝑥∅𝑦 ↔ 〈𝑥, 𝑦〉 ∈ ∅) | |
4 | noel 3228 | . . . . . 6 ⊢ ¬ 〈𝑥, 𝑦〉 ∈ ∅ | |
5 | 4 | pm2.21i 575 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ ∅ → 𝑦∅𝑥) |
6 | 3, 5 | sylbi 114 | . . . 4 ⊢ (𝑥∅𝑦 → 𝑦∅𝑥) |
7 | 6 | adantl 262 | . . 3 ⊢ ((⊤ ∧ 𝑥∅𝑦) → 𝑦∅𝑥) |
8 | 4 | pm2.21i 575 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ ∅ → 𝑥∅𝑧) |
9 | 3, 8 | sylbi 114 | . . . 4 ⊢ (𝑥∅𝑦 → 𝑥∅𝑧) |
10 | 9 | ad2antrl 459 | . . 3 ⊢ ((⊤ ∧ (𝑥∅𝑦 ∧ 𝑦∅𝑧)) → 𝑥∅𝑧) |
11 | noel 3228 | . . . . . 6 ⊢ ¬ 𝑥 ∈ ∅ | |
12 | noel 3228 | . . . . . 6 ⊢ ¬ 〈𝑥, 𝑥〉 ∈ ∅ | |
13 | 11, 12 | 2false 617 | . . . . 5 ⊢ (𝑥 ∈ ∅ ↔ 〈𝑥, 𝑥〉 ∈ ∅) |
14 | df-br 3765 | . . . . 5 ⊢ (𝑥∅𝑥 ↔ 〈𝑥, 𝑥〉 ∈ ∅) | |
15 | 13, 14 | bitr4i 176 | . . . 4 ⊢ (𝑥 ∈ ∅ ↔ 𝑥∅𝑥) |
16 | 15 | a1i 9 | . . 3 ⊢ (⊤ → (𝑥 ∈ ∅ ↔ 𝑥∅𝑥)) |
17 | 2, 7, 10, 16 | iserd 6132 | . 2 ⊢ (⊤ → ∅ Er ∅) |
18 | 17 | trud 1252 | 1 ⊢ ∅ Er ∅ |
Colors of variables: wff set class |
Syntax hints: ↔ wb 98 ⊤wtru 1244 ∈ wcel 1393 ∅c0 3224 〈cop 3378 class class class wbr 3764 Rel wrel 4350 Er wer 6103 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 ax-pr 3944 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-rex 2312 df-v 2559 df-dif 2920 df-un 2922 df-in 2924 df-ss 2931 df-nul 3225 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-br 3765 df-opab 3819 df-xp 4351 df-rel 4352 df-cnv 4353 df-co 4354 df-dm 4355 df-er 6106 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |