ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpiundi Unicode version

Theorem xpiundi 4398
Description: Distributive law for cross product over indexed union. (Contributed by Mario Carneiro, 27-Apr-2014.)
Assertion
Ref Expression
xpiundi  |-  ( C  X.  U_ x  e.  A  B )  = 
U_ x  e.  A  ( C  X.  B
)
Distinct variable group:    x, C
Allowed substitution hints:    A( x)    B( x)

Proof of Theorem xpiundi
Dummy variables  y  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexcom 2474 . . . 4  |-  ( E. w  e.  C  E. x  e.  A  E. y  e.  B  z  =  <. w ,  y
>. 
<->  E. x  e.  A  E. w  e.  C  E. y  e.  B  z  =  <. w ,  y >. )
2 eliun 3661 . . . . . . . 8  |-  ( y  e.  U_ x  e.  A  B  <->  E. x  e.  A  y  e.  B )
32anbi1i 431 . . . . . . 7  |-  ( ( y  e.  U_ x  e.  A  B  /\  z  =  <. w ,  y >. )  <->  ( E. x  e.  A  y  e.  B  /\  z  =  <. w ,  y
>. ) )
43exbii 1496 . . . . . 6  |-  ( E. y ( y  e. 
U_ x  e.  A  B  /\  z  =  <. w ,  y >. )  <->  E. y ( E. x  e.  A  y  e.  B  /\  z  =  <. w ,  y >. )
)
5 df-rex 2312 . . . . . 6  |-  ( E. y  e.  U_  x  e.  A  B z  =  <. w ,  y
>. 
<->  E. y ( y  e.  U_ x  e.  A  B  /\  z  =  <. w ,  y
>. ) )
6 df-rex 2312 . . . . . . . 8  |-  ( E. y  e.  B  z  =  <. w ,  y
>. 
<->  E. y ( y  e.  B  /\  z  =  <. w ,  y
>. ) )
76rexbii 2331 . . . . . . 7  |-  ( E. x  e.  A  E. y  e.  B  z  =  <. w ,  y
>. 
<->  E. x  e.  A  E. y ( y  e.  B  /\  z  = 
<. w ,  y >.
) )
8 rexcom4 2577 . . . . . . 7  |-  ( E. x  e.  A  E. y ( y  e.  B  /\  z  = 
<. w ,  y >.
)  <->  E. y E. x  e.  A  ( y  e.  B  /\  z  =  <. w ,  y
>. ) )
9 r19.41v 2466 . . . . . . . 8  |-  ( E. x  e.  A  ( y  e.  B  /\  z  =  <. w ,  y >. )  <->  ( E. x  e.  A  y  e.  B  /\  z  =  <. w ,  y
>. ) )
109exbii 1496 . . . . . . 7  |-  ( E. y E. x  e.  A  ( y  e.  B  /\  z  = 
<. w ,  y >.
)  <->  E. y ( E. x  e.  A  y  e.  B  /\  z  =  <. w ,  y
>. ) )
117, 8, 103bitri 195 . . . . . 6  |-  ( E. x  e.  A  E. y  e.  B  z  =  <. w ,  y
>. 
<->  E. y ( E. x  e.  A  y  e.  B  /\  z  =  <. w ,  y
>. ) )
124, 5, 113bitr4i 201 . . . . 5  |-  ( E. y  e.  U_  x  e.  A  B z  =  <. w ,  y
>. 
<->  E. x  e.  A  E. y  e.  B  z  =  <. w ,  y >. )
1312rexbii 2331 . . . 4  |-  ( E. w  e.  C  E. y  e.  U_  x  e.  A  B z  = 
<. w ,  y >.  <->  E. w  e.  C  E. x  e.  A  E. y  e.  B  z  =  <. w ,  y
>. )
14 elxp2 4363 . . . . 5  |-  ( z  e.  ( C  X.  B )  <->  E. w  e.  C  E. y  e.  B  z  =  <. w ,  y >.
)
1514rexbii 2331 . . . 4  |-  ( E. x  e.  A  z  e.  ( C  X.  B )  <->  E. x  e.  A  E. w  e.  C  E. y  e.  B  z  =  <. w ,  y >.
)
161, 13, 153bitr4i 201 . . 3  |-  ( E. w  e.  C  E. y  e.  U_  x  e.  A  B z  = 
<. w ,  y >.  <->  E. x  e.  A  z  e.  ( C  X.  B ) )
17 elxp2 4363 . . 3  |-  ( z  e.  ( C  X.  U_ x  e.  A  B
)  <->  E. w  e.  C  E. y  e.  U_  x  e.  A  B z  =  <. w ,  y
>. )
18 eliun 3661 . . 3  |-  ( z  e.  U_ x  e.  A  ( C  X.  B )  <->  E. x  e.  A  z  e.  ( C  X.  B
) )
1916, 17, 183bitr4i 201 . 2  |-  ( z  e.  ( C  X.  U_ x  e.  A  B
)  <->  z  e.  U_ x  e.  A  ( C  X.  B ) )
2019eqriv 2037 1  |-  ( C  X.  U_ x  e.  A  B )  = 
U_ x  e.  A  ( C  X.  B
)
Colors of variables: wff set class
Syntax hints:    /\ wa 97    = wceq 1243   E.wex 1381    e. wcel 1393   E.wrex 2307   <.cop 3378   U_ciun 3657    X. cxp 4343
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-iun 3659  df-opab 3819  df-xp 4351
This theorem is referenced by:  xpexgALT  5760
  Copyright terms: Public domain W3C validator