ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpid11m Unicode version

Theorem xpid11m 4557
Description: The cross product of a class with itself is one-to-one. (Contributed by Jim Kingdon, 8-Dec-2018.)
Assertion
Ref Expression
xpid11m  |-  ( ( E. x  x  e.  A  /\  E. x  x  e.  B )  ->  ( ( A  X.  A )  =  ( B  X.  B )  <-> 
A  =  B ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem xpid11m
StepHypRef Expression
1 dmxpm 4555 . . . . . 6  |-  ( E. x  x  e.  A  ->  dom  ( A  X.  A )  =  A )
21adantr 261 . . . . 5  |-  ( ( E. x  x  e.  A  /\  E. x  x  e.  B )  ->  dom  ( A  X.  A )  =  A )
3 dmeq 4535 . . . . 5  |-  ( ( A  X.  A )  =  ( B  X.  B )  ->  dom  ( A  X.  A
)  =  dom  ( B  X.  B ) )
42, 3sylan9req 2093 . . . 4  |-  ( ( ( E. x  x  e.  A  /\  E. x  x  e.  B
)  /\  ( A  X.  A )  =  ( B  X.  B ) )  ->  A  =  dom  ( B  X.  B
) )
5 dmxpm 4555 . . . . 5  |-  ( E. x  x  e.  B  ->  dom  ( B  X.  B )  =  B )
65ad2antlr 458 . . . 4  |-  ( ( ( E. x  x  e.  A  /\  E. x  x  e.  B
)  /\  ( A  X.  A )  =  ( B  X.  B ) )  ->  dom  ( B  X.  B )  =  B )
74, 6eqtrd 2072 . . 3  |-  ( ( ( E. x  x  e.  A  /\  E. x  x  e.  B
)  /\  ( A  X.  A )  =  ( B  X.  B ) )  ->  A  =  B )
87ex 108 . 2  |-  ( ( E. x  x  e.  A  /\  E. x  x  e.  B )  ->  ( ( A  X.  A )  =  ( B  X.  B )  ->  A  =  B ) )
9 xpeq12 4364 . . 3  |-  ( ( A  =  B  /\  A  =  B )  ->  ( A  X.  A
)  =  ( B  X.  B ) )
109anidms 377 . 2  |-  ( A  =  B  ->  ( A  X.  A )  =  ( B  X.  B
) )
118, 10impbid1 130 1  |-  ( ( E. x  x  e.  A  /\  E. x  x  e.  B )  ->  ( ( A  X.  A )  =  ( B  X.  B )  <-> 
A  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98    = wceq 1243   E.wex 1381    e. wcel 1393    X. cxp 4343   dom cdm 4345
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-br 3765  df-opab 3819  df-xp 4351  df-dm 4355
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator