Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xpid11m | Unicode version |
Description: The cross product of a class with itself is one-to-one. (Contributed by Jim Kingdon, 8-Dec-2018.) |
Ref | Expression |
---|---|
xpid11m |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmxpm 4555 | . . . . . 6 | |
2 | 1 | adantr 261 | . . . . 5 |
3 | dmeq 4535 | . . . . 5 | |
4 | 2, 3 | sylan9req 2093 | . . . 4 |
5 | dmxpm 4555 | . . . . 5 | |
6 | 5 | ad2antlr 458 | . . . 4 |
7 | 4, 6 | eqtrd 2072 | . . 3 |
8 | 7 | ex 108 | . 2 |
9 | xpeq12 4364 | . . 3 | |
10 | 9 | anidms 377 | . 2 |
11 | 8, 10 | impbid1 130 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 97 wb 98 wceq 1243 wex 1381 wcel 1393 cxp 4343 cdm 4345 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 ax-pr 3944 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-v 2559 df-un 2922 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-br 3765 df-opab 3819 df-xp 4351 df-dm 4355 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |