ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpeq2d Unicode version

Theorem xpeq2d 4369
Description: Equality deduction for cross product. (Contributed by Jeff Madsen, 17-Jun-2010.)
Hypothesis
Ref Expression
xpeq1d.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
xpeq2d  |-  ( ph  ->  ( C  X.  A
)  =  ( C  X.  B ) )

Proof of Theorem xpeq2d
StepHypRef Expression
1 xpeq1d.1 . 2  |-  ( ph  ->  A  =  B )
2 xpeq2 4360 . 2  |-  ( A  =  B  ->  ( C  X.  A )  =  ( C  X.  B
) )
31, 2syl 14 1  |-  ( ph  ->  ( C  X.  A
)  =  ( C  X.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1243    X. cxp 4343
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-11 1397  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-opab 3819  df-xp 4351
This theorem is referenced by:  csbresg  4615  fconstg  5083  xpsneng  6296  expival  9257
  Copyright terms: Public domain W3C validator